Absorption of lisdexamfetamine dimesylate and its enzymatic conversion to d-amphetamine

نویسنده

  • Michael Pennick
چکیده

These studies investigated the absorption and metabolic conversion of lisdexamfetamine dimesylate (LDX), a prodrug stimulant that requires conversion to d-amphetamine for activity. Oral absorption of LDX was assessed in rat portal and jugular blood, and perfusion of LDX into isolated intestinal segments of anesthetized rats was used to assess regional absorption. Carrier-mediated transport of LDX was investigated in Caco-2 cells and Chinese hamster ovary (CHO) cells expressing human peptide transporter-1 (PEPT1). LDX metabolism was studied in rat and human tissue homogenates and human blood fractions. LDX was approximately10-fold higher in portal blood versus systemic blood. LDX and d-amphetamine were detected in blood following perfusion of the rat small intestine but not the colon. Transport of LDX in Caco-2 cells had permeability apparently similar to cephalexin and was reduced with concurrent PEPT1 inhibitor. Affinity for PEPT1 was also demonstrated in PEPT1-transfected CHO cells. LDX metabolism occurred primarily in whole blood (rat and human), only with red blood cells. Slow hydrolysis in liver and kidney homogenates was probably due to residual blood. The carrier-mediated absorption of intact LDX, likely by the high-capacity PEPT1 transporter, and subsequent metabolism to d-amphetamine in a high-capacity system in blood (ie, red blood cells) may contribute to the consistent, reproducible pharmacokinetic profile of LDX.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of Lisdexamfetamine Dimesylate in Adults With Attention-Deficit/Hyperactivity Disorder

Lisdexamfetamine dimesylate (LDX) is the first prodrug stimulant used for the treatment of attention-deficit/hyperactivity disorder (ADHD) dosed once daily. Due to its long-acting properties, LDX remains pharmacologically inactive until an enzymatic process predominantly associated with red blood cells converts it to the active ingredient, d-amphetamine and the amino acid lysine. The efficacy o...

متن کامل

Lisdexamfetamine dimesylate: a prodrug stimulant for the treatment of ADHD in children and adults.

Attention-deficit/hyperactivity disorder (ADHD) is a highly genetic neuropsychiatric disorder that can cause impairment at school, work, home, and in social relationships. Once considered a childhood disorder, as many as 65% of children with ADHD continue to exhibit symptoms into adulthood. While a mainstay of ADHD patient care, immediate-release stimulant use has been constrained by concerns a...

متن کامل

Lisdexamfetamine Dimesylate: Prodrug Delivery, Amphetamine Exposure and Duration of Efficacy

Lisdexamfetamine dimesylate (LDX) is a long-acting d-amphetamine prodrug used to treat attention-deficit/hyperactivity disorder (ADHD) in children, adolescents and adults. LDX is hydrolysed in the blood to yield d-amphetamine, and the pharmacokinetic profile of d-amphetamine following oral administration of LDX has a lower maximum plasma concentration (Cmax), extended time to Cmax (Tmax) and lo...

متن کامل

Pharmacokinetics of lisdexamfetamine dimesylate after targeted gastrointestinal release or oral administration in healthy adults.

The purpose of this work was to assess the pharmacokinetics and safety of lisdexamfetamine dimesylate (LDX) delivered and released regionally in the gastrointestinal (GI) tract. In this open-label, randomized, crossover study, oral capsules and InteliSite delivery capsules containing LDX (50 mg) with radioactive marker were delivered to the proximal small bowel (PSB), distal SB (DSB), and ascen...

متن کامل

Metabolism of the prodrug lisdexamfetamine dimesylate in human red blood cells from normal and sickle cell disease donors*

OBJECTIVES Lisdexamfetamine dimesylate (LDX), a long-acting pro-drug psychostimulant, requires conversion to d-amphetamine for therapeutic activity. Conversion of LDX to d-amphetamine occurs primarily in the blood, specifically red blood cells (RBCs). These in vitro studies examine potential conversion in blood-containing pathologically deformed RBCs. METHODS Fresh blood samples from two huma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010